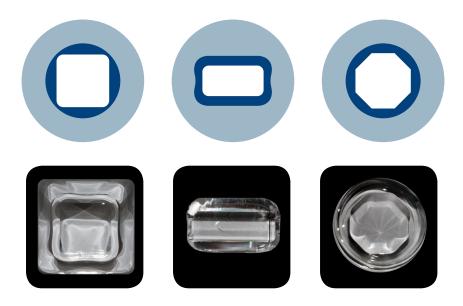


ArmD™ UV NCC, ArmD™ WF NCC Silica/silica non-circular core fiber

These fibers, well-suited for laser applications and more, are particularly advantageous when the shape and uniformity of the output beam are critical. Armadillo provides these fibers in various core/cladding geometries such as rectangular, square, octagonal, offering additional benefits compared to our UV/WV range. The need for laser beam-shaping optics can be eliminated.

Uniform Power Distribution

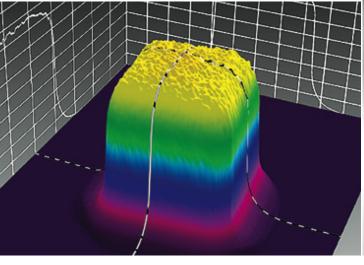

Wavelength

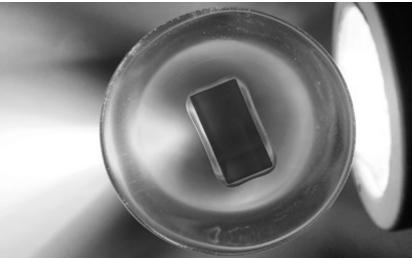
ArmD™ UV NCC	190 – 1200 nm
ArmD™ WF NCC	300 - 2400 nm

Numerical aperture (NA)

Low	0.16 ± 0.02
Standard	$0,22 \pm 0,02$
High	0.28 ± 0.02

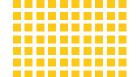
Various core and cladding geometries are offered, including square, rectangular, or octagonal shapes


Advantages

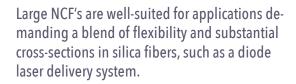

- Broad UV / VIS / NIR spectral range
- Wide range of core and cladding geometries, e.g. square, rectangular or octagonal
- Homogeneous power distribution
- Very low NA expansion
- Excellent image scrambling characteristics
- No need for laser beam-shaping optics
- High resistance against laser damage

- Step-index profile
- Biocompatible material
- ISO9001 compliant manufacturing environment
- 500 ArmD™ UV and ArmD™WF fibers in stock Nonstandard diameters and NA values available
- Option of fully customized fiber production
- CE mark
- Sterilizable using ETO and other methods

Arm D™ UV NCF, Arm D™ WF NCF Silica / silica non-circular fiber

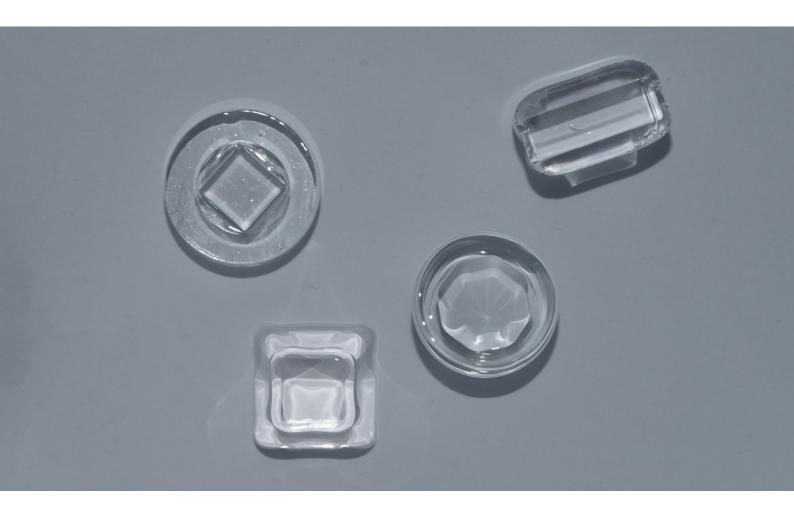


Fibers with a rectangular core geometry homogenize the intensity distribution. The image shows the intensity distribution on the focal level, using NCC fibers with core diameter of $800 \times 800 \, \mu m$.


Fiber with rectangular core geometry.

Pure fused silica and F-doped fused silica square and rectangular-shaped fibers, deviating from the traditional round form, offer distinct advantages by maximizing packing density for both input and output. These fibers are particularly well-suited for connections to angular sources and receivers. The angular-shaped core ensures a consistent short-distance homogenization of input power distribution. Additionally, our angular fibers are available in rectangular shapes with large side ratios and a small corner radius, thanks to our special PCVD technology.

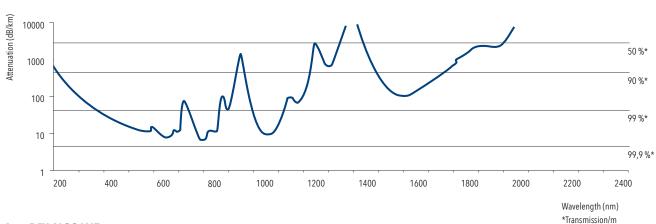
The corner radius for rectangular shapes (r_4) is described as the ratio between the radius of a circle, inscribed in the corner of the rectangle and the diameter of a circle, inscribed within the rectangle tself (D_{in})

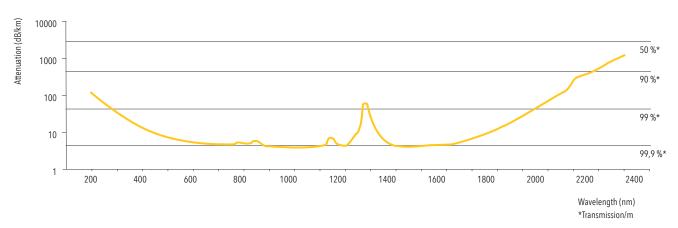

Three types of standard radii are available for a square shape: r_4 <10%, 10%< r_4 <20%, r_4 >20%.

>

 $r=R_4/D_{in}*100\%$

lechnical	data
Mayolonath	/ cnoct


Wavelength / spectral range	ArmD™ UV NCC: 190 – 1200 nm
	ArmD™ WF NCC: 300 – 2400 nm
Numerical aperture (NA)	0,16 ± 0,02 0,22 ± 0,02 0,28 ± 0,02 or customised
Operating temperature	-190 to +350 °C
Core diameter	Geometries and diameters upon request
OH content	ArmD™ UV NCC: high (> 700 ppm)
	ArmD™ WF NCC: low (< 1 ppm)
	Fibers with OH contents < 0,25 ppm
Standard prooftest	100 kpsi (nylon, ETFE, acrylate cladding)
	70 kpsi (polyimide cladding)
Minimum bending radius	50 × cladding diameter (short-term mechanical stress)
	150 × core diameter (during use with high laser power)


Attenuation values

The following diagrams provide an overview of attenuation values in relation to wavelengths:

ArmD™ NCC UV

ArmD™ NCC WF

Applications

The preferred option for applications such as laser surface treatments, astronomy applications, and numerous others.

1 2 3 4 5 6 ! !!!!!

Product code key using the example of WF 300/330 (H)(B)N (28)

 $1 \quad \text{Fiber type} \qquad \qquad \text{UV} = \text{ArmD}^{\text{TM}} \; \text{UV} \; | \; \text{WF} = \text{ArmD}^{\text{TM}} \; \text{WF} \; | \; \text{WFGE} = \text{ArmD}^{\text{TM}} \; \text{WFGE} \; | \; \text{HUV} = \text{ArmD}^{\text{TM}} \; \text{HUV} \; | \; \text{HWF} = \text{ArmD}^{\text{TM}} \; \text{HWF} \; | \; \text{HWF} = \text{ArmD}^{\text{TM}} \; | \; \text{HWF} \; | \; \text{HWF} = \text{ArmD}^{\text{TM}} \; | \; \text{HWF} = \text{ArmD}^{\text{TM}} \; | \; \text{HWF} \; | \; \text{HWF} = \text{ArmD}^{\text{TM}} \; | \; \text$

2 Standard core / cladding ratios Core ø (μm) / Cladding ø (μm)

3 Buffer H = hard polymer buffer | No information = silicone buffer

4 Colour B = black | BL = blue | W = white | Y = yellow | R = red | G = green | No information = transparent

5 Jacket material A = acrylate jacket (no buffer) | F = PFA Fluon® | N = nylon jacket (silicone or hard polymer jacket)

T= ETFE jacket (silicone or hard polymer buffer) | P = polyimide jacket (no buffer)

6 Numerical aperture (NA) $12 = 0.12 \mid 28 = 0.28 \mid \text{No information} = 0.22 \text{ (standard)}$

LV40203150242 Krisjana Valdemara iela 33-27, Riga LV 1010 Latvia

